Probability for means in a simple random sample

- quantitative variable X with a value for each item/individual in a population
- distribution of X for the population will have a mean $\mu_X = \mu$ and a standard deviation $\sigma_X = \sigma$
- select SRS of size n
 - measure value of X for each item/individual and compute sample mean \bar{x}
 - consider \bar{x} as a random variable measured on the outcome of the random process that is selecting a SRS of size n
- can compute $\mu_{\bar{x}} = \mu$ and $\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$
 - having $\mu_{\bar{x}} = \mu$ means \bar{x} is an unbiased estimator of σ
 - having $\sigma_{\bar{x}} = \sigma / \sqrt{n}$ means we can reduce variability in \bar{x} by increasing sample size
- probability model for the continuous random variable \bar{x}
 - from simulations, conjecture that if X has a normal distribution, then \bar{x} has a normal distribution for any sample size
 - from simulations, conjecture that if X has any distribution, then the distribution for \bar{x} gets closer to a normal distribution as the sample size gets larger (Central Limit Theorem)